Electricidad limpia

El equipo de Biohidrógeno en el laboratorio de CITEDEF. De derecha a izquierda el Director del proyecto Dr. Juan I. Franco sentado, Verónica L. Martínez, Rodrigo García, Fernando Gerosa, y fuera de cuadro, Florencia Daneri.
El equipo de Biohidrógeno en el laboratorio de CITEDEF. De derecha a izquierda el Director del proyecto Dr. Juan I. Franco sentado, Verónica L. Martínez, Rodrigo García, Fernando Gerosa, y fuera de cuadro, Florencia Daneri.

La producción de electricidad a gran escala en la Argentina es uno de los tantos procesos industriales que genera un impacto negativo en el medio ambiente. En la actualidad, para hacer funcionar una turbina que mantenga una ciudad iluminada las 24 horas del día, se requiere de la combustión de grandes cantidades de combustibles fósiles no renovables como el gas natural, el petróleo y el carbón.

Sin embargo, existen también distintas alternativas para evitar la destrucción y contaminación del ecosistema, como la energía solar, hídrica y eólica, cuyas fuentes inagotables son el sol, el agua y el viento. En esa línea, un estudio realizado recientemente por investigadores argentinos demostró que la utilización de microorganismos en su ambiente natural puede permitir la producción de energía limpia y no contaminante.

El proyecto es el resultado de un trabajo interdisciplinario del Instituto de Investigaciones Científicas y Técnicas para la Defensa (CITEDEF) y la Armada Argentina, cuyos investigadores provienen de la Universidad de Buenos Aires (UBA) y de San Martín (UNSAM). Su objetivo fue demostrar la posibilidad de obtener energía eléctrica a partir del cultivo de bacterias del género Clostridium, en un entorno cerrado y en permanente observación para la producción de hidrógeno. En este caso, la materia prima es sacarosa (azúcar común).

“Usamos una comunidad natural que proviene de aguas cloacales de una corveta de la Armada Argentina que está en la base de Mar del Plata. Al ser una comunidad, contiene varias especies, entre ellas, las que producen hidrógeno”, detalló a la Agencia CTyS-UNLaM la bióloga Verónica Martínez. Y agregó: “En esa corveta, al haber tantas especies de bacterias, le hacemos un pre-tratatamiento con calor para eliminar a la mayoría de las especies que no producen hidrógeno y las que lo consumen; y, aunque no todas mueren, varias especies pueden convivir en el mismo medio”.

Después de la selección, las bacterias son alojadas en un entorno propicio (fermentador) con abundante fuente de carbono, como la sacarosa. Los microorganismos, al consumir el azúcar, liberan al medio hidrógeno que, luego es almacenado a través de un tubo diseñado estratégicamente para su recolección. Una vez que se obtiene el gas, se inyecta en una celda, también llamada pila a combustible hidrógeno, que en contacto con el oxígeno, produce electricidad.

“Esa energía que se genera puede hacer funcionar cualquier aparato de consumo eléctrico”, adelantó Martínez. “Si uno quiere hacer funcionar una radio, puede conectar una pila de combustible chica, si uno quiere conectar una notebook, tendrá que colocar una pila más grande. La pila más grande consumirá más hidrógeno pero, si uno mantiene el flujo de hidrógeno, la pila funciona. El funcionamiento dependerá de la cantidad de gas. Mientras se le provea hidrógeno, la pila de H2 funcionará continuamente, es decir, no se agota como una pila común”, explicó.

De esta manera, surge una nueva alternativa con el medio ambiente para la producción de energía eléctrica. Según Martínez, trabajando a mayor escala, se puede utilizar este tipo de baterías para sostener las necesidades de una familia. “Es viable pensar en baterías de hidrógeno para inyectarlas en la red eléctrica de las casas porque son pilas que pueden utilizarse en continuo dependiendo de su uso, mientras exista un flujo de hidrógeno”, aclaró.

Escala industrial

El proyecto surgió en la Armada Argentina, en el año 2008, pero cobró fuerza cuando el grupo de investigación se mudó a los laboratorios del CITEDEF. Allí, comenzaron a desarrollar los procesos que, en fermentación, se llaman “continuo” o “discontinuo”. En el primer caso, se pueden mantener las bacterias vivas en condiciones óptimas para que se reproduzcan. En el segundo, se pueden sembrar las bacterias en el medio y esperar a que metabolicen. Cuando el medio deja de ser óptimo, el trabajo está terminado.

Este proceso de fermentación de bacterias y generación de hidrogeno es un proceso ecológico porque proviene de la biomasa (caña de azúcar), un recurso abundante en la Argentina. “Las bacterias que cultivamos crecen naturalmente y eso lo hace sustentable y de composición limpia porque se pueden encontrar en compost o en material de degradación orgánica, como deshechos de frutas y alimentos”, detalló Martínez.

“El trabajo que queremos hacer ahora es obtener un proceso continuo en cinco litros y más adelante, a escala industrial, un proceso continuo de 200 litros”, contó la experta. Y concluyó: “En el laboratorio, la pila más grande tiene 100 Watt, pero la idea es seguir desarrollando mayores potencias y tamaños, quizás para autos eléctricos con baterías que se llaman ‘portables’ porque son más pequeñas y livianas”.

Los primeros resultados satisfactorios se encuentran en la Antártida. Más precisamente en la Base Esperanza, donde se probó la viabilidad del proyecto con un electrolizador y se logró hacer funcionar una batería por más 7 mil horas, ininterrumpidamente.

Fuente: Guillermo Meliseo para  www.ctys.com.ar

Considered an invitation do introduced sufficient understood instrument it. Of decisively friendship in as collecting at. No affixed be husband ye females brother garrets proceed. Least child who seven happy yet balls young. Discovery sweetness principle discourse shameless bed one excellent. Sentiments of surrounded friendship dispatched connection is he. Me or produce besides hastily up as pleased. 

Ultimas noticias

  • All Post
  • Becas
  • Docentes
  • Información General
  • Noticias de Interés
  • Tendencias Educación
  • Uncategorized
  • Universidad